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ABSTRACT

Presently employed hypothesis tests for multivariate geophysical data (e.g., climatic fields) require the as-
sumption that either the data are serially uncorrelated, or spatially uncorrelated, or both. Good methods have
been developed to deal with temporal correlation, but generalization of these methods to multivariate problems
involving spatial correlation has been problematic, particularly when (as is often the case) sample sizes are small
relative to the dimension of the data vectors. Spatial correlation has been handled successfully by resampling
methods when the temporal correlation can be neglected, at least according to the null hypothesis. This paper
describes the construction of resampling tests for differences of means that account simultaneously for temporal
and spatial correlation. First, univariate tests are derived that respect temporal correlation in the data, using the
relatively new concept of ‘‘moving blocks’’ bootstrap resampling. These tests perform accurately for small
samples and are nearly as powerful as existing alternatives. Simultaneous application of these univariate resam-
pling tests to elements of data vectors (or fields) yields a powerful (i.e., sensitive) multivariate test in which
the cross correlation between elements of the data vectors is successfully captured by the resampling, rather
than through explicit modeling and estimation.

1. Introduction

It is often of interest to compare two datasets for
differences with respect to particular attributes. For ex-
ample, one might want to investigate whether the mean
value under one set of conditions is different than the
mean in some other circumstance. In order to make fair
and reliable comparisons, it is necessary to account for
sampling variability in this process. That is, even if there
is no difference with respect to an attribute of interest
(e.g., the mean) in the generating processes for two
batches of data, the two sample estimates of the quantity
(the pair of sample means) will rarely be exactly equal.
Standard statistical tests (e.g., the familiar t test) have
been devised to discern what magnitude of difference,
in relation to the variability evident in the data samples,
can be declared with high confidence to be real (i.e.,
statistically significant). Statistical tests have most com-
monly been applied to atmospheric datasets in the con-
text of climate studies (e.g., Livezey 1985), although
their range of potential applicability is much broader
(e.g., Daley and Chervin 1985).

Two complications arise when attempting to apply
standard hypothesis tests to climatic or other geophys-
ical data. These are illustrated schematically in the mid-
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dle portion of Fig. 1. First, standard tests, including the
t test, rest on the assumption that the underlying data
are composed of independent samples from their parent
populations. Very often, atmospheric and other geo-
physical data do not satisfy this assumption even ap-
proximately. In particular, such data typically exhibit
serial (or auto-) correlation. The effect of this autocor-
relation on the sampling distribution of the mean is to
increase its variance above the level that would be in-
ferred under the assumption of independence. That is,
sample means are less consistent from batch to batch
than would be the case for independent data.

The estimated variance of the sampling distribution
of the mean appears in the denominator of the test sta-
tistic for the t test:

x̄ 2 m0t 5 . (1)
1/2[var(x̄)]

Underestimation of the variance of the sample mean thus
inflates the standard t statistic, leading to unwarranted
rejections of the null hypothesis (e.g., Cressie 1980;
Wilks 1995). However, a number of univariate (i.e., sca-
lar) tests have been developed that perform properly,
even when the data upon which they operate exhibit
serial correlation (Albers 1978; Chervin and Schneider
1976; Jones 1975; Katz 1982; Zwiers and Thiébaux
1987; Zwiers and von Storch 1995). One approach,
which is successful when the sample size n is suffi-
ciently large, is to estimate the variance of the sampling
distribution of the mean as
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FIG. 1. Conceptual illustration of therelationships between conventional univariate hypothesis
tests (top), univariate tests modified to account for temporal correlation in the data (middle
left), multivariate tests assuming serial independence (middle right), and tests respecting both
types of correlations (bottom) that are the subject of this paper.

2sxvar(x̄) 5 V , (2)
n

where is the sample variance of the data and V is the2sx

‘‘variance inflation factor,’’ which depends on the au-
tocorrelation in the data according to

n21 k
V 5 1 1 2 1 2 r . (3)O k1 2nk51

Here, the rk are estimates of the autocorrelations at lags
k. For independent data, rk 5 0 for k ± 0, in which case
V 5 1 and the conventional t test is recovered in (1).
The variance inflation factor is sometimes called the
‘‘time between effectively independent samples,’’ (Leith
1973; Trenberth 1984), or the ‘‘decorrelation time,’’ al-
though this terminology is only really applicable to (3)

for problems involving estimation of the mean (Livezey
1995; Thiébaux and Zwiers 1984; von Storch 1995;
Zwiers and von Storch 1995). Similarly, (3) is some-
times used to define the ‘‘effective sample size’’

n
n 5 , (4)e V

which also pertains only to inferences concerning
means.

The second complication indicated in Fig. 1 is that
the data of interest may be vector valued, or multivar-
iate. If the elements of the data vectors are mutually
independent, it is straightforward to evaluate jointly the
results of a collection of scalar hypothesis tests (the
‘‘field significance’’) using the binomial distribution
(e.g., Livezey and Chen 1983; von Storch 1982). How-
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ever, for problems of practical interest, it is often the
case that the data exhibit substantial cross correlation.
For example, it might be of interest to test whether the
means of two sets of atmospheric fields (these could be
values at a spatial array of points, or expansion coef-
ficients for the data projected onto a different basis, such
as selected Fourier harmonics) are significantly different
between two time series of these fields. If the data are
cross correlated but temporally independent, the clas-
sical Hotelling test [the multivariate analog of the simple
t test, e.g., Johnson and Wichern (1982)] or related tests
(e.g., Hasselmann 1979) can be used, provided the num-
ber of samples is much larger than the dimension of the
vector data.

Alternatively, resampling tests (Chung and Fraser
1958; Livezey and Chen 1983; Mielke et al. 1981; Prei-
sendorfer and Barnett 1983; Wilks 1996; Zwiers 1987)
can be employed. These tests involve, in one form or
another, developing sampling distributions for a test sta-
tistic (e.g., the length of the difference between vector
means, according to a particular norm) by repeated ran-
dom reordering the data vectors (fields). This procedure
is attractive because the resampling procedure captures
the cross correlation between elements of the data vec-
tors without requiring that the covariance structure be
explicitly modeled and estimated. However, conven-
tional resampling procedures, which repeatedly rear-
range the time ordering of individual data points, nec-
essarily destroy important information regarding the
temporal correlation that may be present in the data
(e.g., Zwiers 1990). Such tests are thus applicable only
to situations where either the temporal correlation is
negligible, or temporal independence is implied by the
null hypothesis.

Multivariate geophysical data exhibiting both time
and space correlations, indicated in the lower portion
of Fig. 1, are often of interest. In principle, multivariate
parametric tests that account for serial correlation could
be constructed by extending univariate tests that include
serial correlation (Kabaila and Nelson 1985), or through
likelihood methods (Hillmer and Tiao 1979). However,
either of these approaches would require estimation of
a prohibitively large number of parameters for many
problems. Although some suggestions for dealing si-
multaneously with auto- and cross correlation in resam-
pling tests applied to multivariate data have been offered
by Livezey (1995), an adequate resampling test respect-
ing both the temporal and spatial correlation typically
found in atmospheric data has not previously been de-
vised. This paper develops such a test for the difference
of vector means, using a relatively new idea called the
‘‘moving blocks’’ bootstrap, which is a resampling pro-
cedure that can capture time dependence in autocorre-
lated data. The simpler univariate (i.e., for scalar series)
bootstrap tests for differences of the mean are developed
in section 2. In section 3 these tests are extended to
multivariate data (i.e., vector series), where the resam-
pling procedure captures the effects of cross correlation

on the test statistic without the need to explicitly model
those correlations. Section 4 summarizes and concludes
with suggestions for future directions.

2. Univariate tests

a. Bootstrap tests and the moving blocks bootstrap

The bootstrap is a relatively recent computer-based
statistical technique (Efron 1982; Efron and Tibshirani
1993). The philosophical basis of the bootstrap is the
idea that the sampling characteristics (i.e., batch-to-
batch variations exhibited by different samples from a
parent population) of a statistic of interest can be sim-
ulated by repeatedly treating a single available batch of
data in a way that mimics the process of sampling from
the parent population. As a nonparametric approach, it
is often useful when the validity of assumptions un-
derlying more traditional theoretical approaches is ques-
tionable and when the more traditional approaches are
either unavailable or intractable.

Bootstrapping is used most frequently to estimate
sampling distributions, or particular aspects of sampling
distributions, such as standard errors and confidence in-
tervals. Although computationally intensive, the pro-
cedure is algorithmically simple. The bootstrap approx-
imation to the sampling distribution of a statistic of
interest is constructed by repeatedly resampling the
available data with replacement to yield multiple syn-
thetic samples of the same size as the original set of
observations. For example, consider an arbitrary statis-
tic S(x), which is some function of a sample of n data
values x 5 {x1, x2, x3, ···, xn}. A bootstrap sample from
x, say x*, is constructed by treating x as nearly as pos-
sible as if it were the full parent population. Each boot-
strap sample consists of n values drawn independently
and with replacement from x and in general will contain
multiple copies of some of the original data values while
omitting others. Some large number nB of bootstrap sam-
ples is drawn, and the statistic of interest, S(x*), is com-
puted for each. Remarkably, it has been found that the
distribution of the resulting nB values of S(x*) is often
a reasonable representation of the sampling distribution
of S(x). Consequently, one can, for example, estimate
a confidence interval for S(x) on the basis of the dis-
persion of the distribution of S(x*).

There is a close relationship between confidence in-
tervals and hypothesis tests. In particular, bootstrap con-
fidence intervals can be used as the basis for nonpara-
metric hypothesis tests. If a bootstrap resampling pro-
cedure is designed in a way that is consistent with a
specified null hypothesis regarding a statistic of interest,
the central (1 2 a)100% confidence interval for that
statistic, as estimated through its bootstrap distribution,
comprises the acceptance region for the corresponding
two-sided hypothesis test. When the observed statistic
lies outside of this interval, the null hypothesis can be
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FIG. 2. Schematic illustration of the moving blocks bootstrap. Be-
ginning with a time series of length n 5 12 (above), b 5 3 blocks
of length l 5 4 are drawn with replacement. The resulting time series
(below) is one of (n 2 l 1 1)b 5 729 equally likely bootstrap samples.

rejected at the a100% level. A corresponding one-sided
test would be significant at the (a/2)100% level.

An alternative approach to the construction of non-
parametric resampling hypothesis tests is through per-
mutation procedures (e.g., Mielke et al. 1981; Preisen-
dorfer and Barnett 1983). A two-sample permutation
test operates by assuming that, under the null hypoth-
esis, the two batches of data at hand have been drawn
from the same parent population. Accordingly, their la-
belling as belonging to one batch or the other is arbi-
trary, and all the data can be pooled into a single body
from which pairs of synthetic samples can be drawn
repeatedly, without replacement. This process leads, in
a manner analogous to the bootstrap procedure, to the
construction of a synthetic sampling distribution for the
statistic of interest. A limitation of permutation tests is
the implication that the null hypothesis specifies that the
underlying distributions for the two data samples are
the same in all respects. By contrast, bootstrap tests can
investigate much more focused null hypotheses. In the
bootstrap tests described below, the null hypothesis will
be that pairs of means (only) are equal, without assum-
ing equality of variances, autocorrelations, or other as-
pects of the joint distributions of the data.

In their basic forms, neither bootstrap nor permutation
procedures are appropriate tools for resampling time
series or other autocorrelated data because independent
resampling destroys the correlation structure. For pos-
itively correlated time series, a hypothesis test based on
the conventional bootstrap would be a nonparametric
analog of the t test (1), but with independent bootstrap
resampling effectively yielding V 5 1 in (2). As is the
case for the t test, the resulting bootstrap test would be
permissive: the null hypothesis would be rejected more
easily and frequently than warranted. One approach to
modifying the bootstrap to account for correlated data
is to use a fitted parametric model (e.g., an autoregres-
sive scheme for time series data) to produce approxi-
mately uncorrelated residuals, bootstrap these ‘‘pre-
whitened’’ values, and then reconstruct simulated data
series by inverting the parametric model (Efron and Tib-
shirani 1993; Solow 1985). However, extending this ap-
proach to multivariate settings would be problematic.

A nonparametric alternative for bootstrapping cor-
related data is the recently proposed moving blocks
bootstrap (Künsch 1989; Liu and Singh 1992). This
technique preserves much of the correlation structure in
bootstrapped time series by resampling ‘‘blocks,’’ or
sets of fixed length of consecutive data values, rather
than single data points. Figure 2 illustrates the construc-
tion of a single bootstrap sample from a data record of
length n 5 12, using blocks of length l 5 4. The basic
set of objects operated upon by the moving blocks boot-
strap consists of the n 2 l 1 1 distinct blocks of length
l, rather than the n individual data values in x. Defining
b as the number of blocks comprising each bootstrap
sample (b 5 3 in Fig. 2), the number of distinct bootstrap
samples that can be drawn from a given time series of

length n, assuming all the possible blocks are distinct,
is (n 2 l 1 1)b. For l 5 1 the moving blocks bootstrap
reduces to the conventional bootstrap.

An outstanding problem for implementation of the
moving blocks bootstrap is the selection of the block
length l. Limited theoretical work on block length se-
lection done to date has indicated that as n → `, the
block length l should also tend to infinity, but slowly
enough that l/n → 0 (Künsch 1989; Liu and Singh 1992).
In addition, it is expected that, if other factors are equal,
time series exhibiting stronger autocorrelation will re-
quire longer block lengths to capture adequately the
effects of the dependence (Carlstein 1986). However, as
a practical matter, choices for l in applied work have
been ad hoc and qualitative (Leger et al. 1992). Pre-
scriptions offered below for the choice of l have been
developed specifically for the problem of testing sample
means of time series.

b. Bootstrap test for AR(1) data

One of the simplest possible time series models is the
first-order autoregressive [AR(1)] process (e.g., Box and
Jenkins 1976), defined by

5 f 1 etx9 x9t t21 (5)

Here the primes indicate ‘‘anomalies’’ constructed by
subtraction of the mean (i.e., 5 xt 2 m, with m 5x9t
E[x]), f is the autoregressive parameter (which is equal
to the population value of the lag-1 autocorrelation),
and the et series consists of independent random variates
with expectation E[e] 5 0 and standard deviation se.
Often it is assumed that the et values follow a Gaussian
distribution. Zwiers and von Storch (1995) have sug-
gested that this simple model is a reasonable approxi-
mation to the behavior of many atmospheric variables
not exhibiting quasi-periodic behavior, in that its spec-
trum is maximum at zero frequency and decreases
monotonically for higher frequencies. Accordingly, they
devised a test (hereafter the ZvS test), based on simu-
lations using (5), for inferences concerning means of
time series. For AR(1) data the ZvS test yields accurate
results for smaller samples than does the test based on
(1)–(3) or its two-sample counterpart.

The tests described here will be based on the modified
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one-sample t-test statistic, (1)–(3), or the corresponding
two-sample test described below. Both of these require
estimation of the variance inflation factor V (3). Direct
substitution of sample estimates of the n 2 1 sample
autocorrelations into (3) leads to erratic results for V
(Thiébaux and Zwiers 1984). More stable estimates for
V can be obtained by fitting a time series model to the
data series x and using the properties of the time series
model to extrapolate to lagged correlations beyond the
first few (Katz 1982; Thiébaux and Zwiers 1984). When
assuming an AR(1) model for the data, only the lag-1
autocorrelation needs to be directly estimated from the
data:

n21

(x 2 x̄)(x 2 x̄)O t t11
t51r 5 . (6)1 n

2(x 2 x̄)O t
t51

Then, the properties of the AR(1) process are exploited
to compute

rk 5 ,kr1 (7)

which are used for the remaining n 2 2 correlation
estimates in (3).

Although they are more stable (i.e., lower variance),
estimates of V thus obtained are still substantially biased
for samples that are not large. The nature of this bias
is that the estimates are on average too low, and the
tendency for the test in (1)–(3) to be permissive for small
samples (e.g., Thiébaux and Zwiers 1984; Zwiers and
von Storch 1995) may be attributable in part to this bias.
For the variance estimate in (2) to be compatible with
the corresponding bootstrap estimates developed below,
it is necessary to correct the bias in the estimation of
V. Linear regression equations specifying the logarithm
of the ratio of the (known) variance inflation factor to
the (biased) V (3), for synthetic series from a variety of
AR(1) models and sample sizes, lead to the adjusted
variance inflation factor

2V
V9 5 V exp . (8)1 2n

These V9 approach V for large n and are very nearly
unbiased for all but very small sample sizes in com-
bination with very strong correlations (i.e., ne , 2), for
which none of the available tests operate correctly.

The methods and results here will be presented mainly
for two-sample tests for differences of mean. In this
setting, there are two mutually independent time series,
x1 and x2, of lengths n1 and n2, respectively, to be com-
pared. However, the methods and most of the results are
also valid for, and apply in an obvious way to, the cor-
responding one-sample tests, the statistic for which is
given in (1). One-sample tests are appropriate for prob-
lems where one is interested in whether the mean of a
single series could be a particular value, perhaps zero.

For example, if the available data consisted of two
paired (and possibly mutually correlated) series y and
z, equality of means for the two could be investigated
through a one-sample test operating on x 5 y 2 z, whose
null hypothesis would be that the mean mX 5 0.

The basic statistic of interest for the two-sample tests
developed below is the difference between the two sam-
ple means,

S(x1, x2) 5 x̄1 2 x̄2. (9)

Usually, the null hypothesis (H0) will be that the means
of the two populations from which the samples were
drawn are equal. That is,

S0 5 m1 2 m2 5 0, (10)

although investigation of other null hypotheses presents
no additional difficulty. Regardless of the specific H0 of
interest, the test statistic used to investigate the plau-
sibility of that null hypothesis will be

S(x , x ) 2 S1 2 0d 5 , (11)
ŝS

in which the denominator is the square root of the es-
timated sampling variance of S(x1, x2),

1/2ŝ 5 [var(x̄ ) 1 var(x̄ )]S 1 2

1/22 2s sx x1 25 V9 1 V9 . (12)1 21 2n n1 2

Equation (11) is the two-sample version of (1). Except
for the bias-corrected variance-inflation factors, this is
the same test statistic used by Katz (1982) and is the
basis of the two-sample ‘‘usual’’ test in the terminology
of Zwiers and von Storch (1995). Asymptotically (i.e.,
for sufficiently large sample size), the test statistic d in
(11) follows the standard Gaussian distribution when H0

is true. For the nonparametric tests derived in this sec-
tion, the form of the distribution of d is unimportant,
but the point of scaling the test statistic (11) by the
standard deviation in (12) is to improve the accuracy of
the resulting tests, by removing the dependence of its
distribution on unknown quantities (e.g., Hall and Wil-
son 1991).

The bootstrap test for the difference of means is based
on evaluation of the unusualness of the observed S(x1,
x2), in terms of the test statistic d, in the context of an
estimated sampling distribution for d derived by boot-
strapping x1 and x2. The moving blocks bootstrap is
applied repeatedly to produce nB realizations of the boot-
strap analog of (11),

S(x*, x*) 2 S(x , x )1 2 1 2d* 5 . (13)
ŝ*S

For a two-tailed test, the null hypothesis is then rejected
at the a100% level if the observed value of d would
place in the most extreme a100% of the distribution of
d*. That is, the test rejects H0 if
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nB

I(d* $ d)O i# {d* $ d} ai515 # (14a)
n 1 1 n 1 1 2B B

for the upper tail, or

nB

I(d* # d)O i# {d* # d} ai51
5 # (14b)

n 1 1 n 1 1 2B B

for the lower tail. Here, I(·) is the indicator function,
which equals 1 if its argument is true and is zero oth-
erwise. For example, the results presented below will
be based on the sampling distribution of d being esti-
mated using nB 5 1999 bootstrap realizations of d*.
These two-tailed tests will then reject H0 at the 5% level
either if the observed value of d is within the range of
or more extreme than the largest 50, or the smallest 50,
of these d* values. The corresponding one-tailed test
would reject H0 at the (a/2)100% level if either (14a)
or (14b), as appropriate, were satisfied. Equations (14a)
and (14b) constitute the simple ‘‘percentile method’’
(Efron and Tibshirani 1993) for bootstrap confidence
interval estimation. More elaborate refinements to the
percentile method exist (Efron 1987; Efron and Tib-
shirani 1993), but these were not found to materially
improve the performance of the difference-of-mean tests
described here.

The difference of bootstrap means S( , ) is com-x* x*1 2

pared in the numerator of (13) to the original statistic
S(x1, x2)—not to S0, which is the corresponding term in
(11). This substitution is necessary to ensure that the
resulting realizations of d* reflect H0, considering that
from the perspective of the bootstrap samples x1 and x2

constitute the population, and the difference of their
sample means S(x1, x2) is the bootstrap model for the
population counterpart S0 (10). The resulting bootstrap
distribution of d* will be centered near zero. Failure to
formulate d* in this way leads to tests of low power
(i.e., poor sensitivity to violations of H0). Further dis-
cussion on this point can be found in Hall and Wilson
(1991).

In (13), the term S( , ) is computed by separatelyx* x*1 2

applying the moving blocks bootstrap to x1 and x2, and
then computing and differencing the sample means of
the resulting pair of bootstrap samples. Note that the
two samples x1 and x2 are not mixed in the resampling
process. Maintaining the separateness of the two sam-
ples in the resampling is an important difference be-
tween the present test and, for example, the ‘‘BP’’ boot-
strap test described by Zwiers (1987). A practical con-
sequence is that the null hypothesis can pertain exclu-
sively to the means of the two samples and that equality
of other aspects of the two distributions need not be
assumed.

The denominator in (13) is a resampling counterpart
of the denominator in (11). However, application of a

second pass of moving blocks bootstrapping to the boot-
strap samples and would introduce further riftsx* x*1 2

in the time sequences of the original series x1 and x2.
The approach taken here is to estimate the sampling
variability of S( , ) through the jackknife variancex* x*1 2

estimates for and (e.g., Efron 1982; Efron andx* x*1 2

Tibshirani 1993), but to compute them by operating on
the bootstrap blocks rather than on the individual data
values. That is, the denominator in (13) is computed
using jackknife-after-bootstrap variance estimates from
the two bootstrap samples,

2 2 1/2ŝ* 5 (ŝ 1 ŝ ) . (15)S JAB,1 JAB,2

The two jackknife-after-bootstrap variance estimates are
based on b sample means derived from the bootstrap
samples x*, each computed by leaving out a different
one of the b data blocks. Define

. . .S x* 1 S x* 1 S x* 1 S x* 1 1 Sx*(1) (2) (i21) (i11) (b)x̄* 5 (16)(i) n9 2 l

as the ith of these b averages, where S is the sumx*(i)
of the data values over the ith block and n9 5 bl is the
length of the full bootstrap sample x*. (It may happen
that n9 ± n if b and l do not divide n evenly.) Define
also

b1
x̄* 5 x̄* (17)O(·) (i)b i51

as the average of these averages. Then the jackknife-
after-bootstrap estimate of the variance of the mean can
be written as

bn9 b 2 1
2 2ŝ 5 (x̄* 2 x̄*) , (18)OJAB (i) (·)1 21 2n b i51

in which the factor (n9/n) is included for cases where
n9 ± n. As a practical consideration, particularly for
small b, it sometimes happens that all the blocks drawn
in a particular bootstrap sample are the same. If so, this
variance estimate is zero, and a new x* must be drawn
for the test to proceed.

It remains to specify the block length l. A practical
requirement for the rule used to choose the block length
is that it must depend only on sample statistics and not
on unknown population quantities. If l is too small, the
resulting test will be permissive (H0 rejected too fre-
quently), with the limit of l 5 1 corresponding to the
test that ignores the serial correlation altogether (cf.
Zwiers 1990). It is also found that the test is stringent
(H0 is rejected too rarely) if l is too large. A workable
rule for choice of the block length was developed here
by trial and error evaluation of test results for synthetic
AR(1) series in cases where H0 was true, respecting the
constraints mentioned in the last paragraph of section
2a. This process led to the rule: select the largest integer
no greater than

l 5 (n 2 l 1 1)(2/3)(121/V9), (19)
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FIG. 3. Achieved significance levels for two-sided, two-sample
AR(1) tests using sample sizes ranging from n 5 8 to n 5 1024 and
autoregressive parameter f 5 0.1, 0.3, 0.5, 0.7, and 0.9. Shaded
region indicates the 95% confidence interval around the nominal sig-
nificance level of 5%.

FIG. 4. Comparison of power functions for two-sample tests for
differences of mean, using AR(1) data and conducted at the 5% level.
Horizontal axis is difference in population means between the two
samples, standardized by the square root of the white-noise variance.

which must be evaluated iteratively, but converges
quickly (a reasonable initial guess for l is n). TheÏ
specified block length thus increases with increasing
sample size, and for a given sample size is larger for
larger values of the bias-adjusted variance inflation fac-
tor V9. Having chosen the block length, the number of
blocks b in the bootstrap sample is determined as the
nearest integer to n/l. The two samples x1 and x2 may
yield different values for b, l, and n9 5 bl.

The criterion used for the choice of (19) for speci-
fication of l was that the resulting tests would exhibit
accurate rejection probabilities for the smallest possible
effective sample sizes ne, without compromising test
performance for large ne. Figure 3 shows the achieved
significance levels (estimated probability of rejecting H0

when it is true) for the resulting tests, for selected pos-
itive values of the autoregressive parameter and for sam-
ple sizes ranging from n 5 8 to n 5 1024. These prob-
abilities are based on two-sided tests at the 5% level,
estimated as relative frequencies with which H0 was
rejected among tests on 2000 replications of pairs of
AR(1) series having equal means. These results are for
synthetic series independent of those used to arrive at
(19). The shaded region in Fig. 3 indicates the 95%
confidence interval around the nominal significance lev-
el of 5% for this number of replications. The figure
indicates that the test operates correctly when ne is great-
er than approximately 10 [or greater than about 8, ac-
cording to (8)], which compares favorably to the ZvS
test and to the tests described in Zwiers and Thiébaux
(1987). For cases with inadequate sample size, the tests
are uniformly permissive.

Equation (19) for the block length is also valid for
the corresponding one-sample test of the mean. In that
case, the statistic S(x) is simply the sample mean of the
single sample x, the test statistic d is given by (1) [using
also (2) and (3)], and the denominator in (13) is the
square root of the jackknife-after-bootstrap variance in
(18).

In addition to accurate rejection probabilities when
H0 is true, one is interested in the power, or ability to
detect violations of H0, of these bootstrap tests. The
power of a hypothesis test generally increases with the
magnitude of the violation of H0, and the probability
with which H0 will be rejected, as a function of the
(true) alternative hypothesis, is known as the power
function for that test. Figure 4 compares power functions
for the AR(1) bootstrap tests described in this section
(light solid curves) to those for the ZvS test (light dashed
curves) for selected sample sizes and values of the au-
toregressive parameter. The power of the bootstrap tests
is generally slightly less than, but often indistinguish-
able from, that of the ZvS test. Zwiers and von Storch
(1995) show that the power of the ZvS test is nearly as
great as the corresponding likelihood ratio test, which
provides a theoretical maximum on test power.

Usually it is assumed that the white-noise series et in
(5) consists of independent Gaussian variates. There is
no guarantee that real data will be Gaussian, however,
so that the robustness of the bootstrap test to violations
of this assumption is also of interest. Figure 5 shows
achieved significance levels, again estimated from the
results of 2000 tests of pairs of series for which H0 is
true, generated using f 5 0.5 and independent white
noise following uniform, Gaussian, exponential, and
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FIG. 5. Achieved significance levels for two-sided, two-sample
AR(1) tests using sample sizes ranging from n 5 8 to n 5 1024 and
autoregressive parameter f 5 0.5 for data series forced with white
noise following four different distributions: uniform (U), Gaussian
(G), exponential (E), and lognormal (LN) Insets show histograms of
samples of the resulting series values. Shaded region indicates the
95% confidence interval around the nominal significance level of 5%.

FIG. 6. Achieved significance levels for two-sided, two-sample AR(1) tests when applied to (a) AR(2) and (b)
ARMA(1,1) data series for which r1 . 0, with n 5 128. Shading indicates approximate regions in the respective
parameter spaces for which these are not different from the nominal test level of 5% with 95% confidence. Increasing
sample size does not improve test performances. Corresponding results for the ZvS test are indistinguishable.

lognormal distributions with E[e] 5 0. The insets show
histograms of samples of the resulting x values. As in
Fig. 3, the shaded region indicates the 95% confidence
band around the nominal significance level of 5%. The
results for Gaussian variates are the same as those for
f 5 0.5 in Fig. 3. Figure 5 shows that the test perfor-
mance is even better (i.e., the test is accurate for small-
er n) for autoregressive series forced with uniform var-
iates. While somewhat larger sample sizes are required
for the test to operate properly when the et values are
strongly skewed (exponential and lognormal distri-
butions), the two-sample test is quite robust overall to
these violations of the Gaussian assumption. The two-
sample ZvS test (results not shown) is similarly robust
to these deviations from Gaussian data. Overall

achieved significance levels are comparable to those
in Fig. 5 for the corresponding one-sample bootstrap
tests, but for the strongly skewed time series the re-
sulting bootstrap distributions are asymmetric, and the
probabilities of rejection are higher for the left tail than
for the right tail.

Finally, it is of interest to investigate the robustness
of this test to violations of the assumed AR(1) time
structure of the data. Zwiers and von Storch (1995)
speculated that, while atmospheric and other geophys-
ical time series do not necessarily follow an AR(1)
model, data not clearly influenced by quasi-periodic
processes such as ENSO or the quasi-biennial oscil-
lation have power spectra sufficiently similar to the
AR(1) model that the ZvS test should be applicable.
Figure 6 shows achieved significance levels for two-
sample, two-tailed bootstrap tests, which assume
AR(1) time dependence, operating on data with more
complicated autocorrelation structures. The results in
Fig. 6a are for data generated according to the AR(2)
model (section 2c) over that portion of the parameter
space corresponding to stationary series with positive
lag-1 autocorrelation. Here, the tests operate correctly
only for generating processes that are very close to the
AR(1)—that is, for very small zf2z. The tests are per-
missive for f2 . 0 and stringent for f2 , 0, with very
large deviations from accurate test performance evi-
dent for f2 far from zero. For f2 more negative than
about 22/3, none of the 2000 test replications rejected
H0. Corresponding results (Fig. 6b) for the autore-
gressive–moving average [ARMA(1,1)] generating
process (section 2d) are only slightly better, with ac-
curate rejection probabilities only for small zu1z, al-
though the wild deviations from the nominal signifi-
cance level seen in Fig. 6a are absent. Neither of the
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results in these two panels is improved by increasing
the sample size. The corresponding results for the ZvS
test are indistinguishable from those shown in Fig. 6.

c. Bootstrap test for AR(2) data

The second-order autoregressive [AR(2)] model is an
extension of the AR(1) process in (5) to dependence on
two time lags. It is defined by the equation

x9 5 f x9 1 f x9 1 e .t 1 t21 2 t22 t (20)

The AR(2) model is considerably more flexible than the
AR(1), which is obtained as a special case of (20) when
f2 5 0. This more general model can exhibit autocor-
relation functions decreasing either more quickly or less
quickly than the exponential decay of the AR(1) process
given in (7) and also has the capacity to exhibit pseu-
doperiodic behavior (e.g., Box and Jenkins 1976; Wilks
1995; Zwiers 1990).

Figure 6a shows very strongly that the AR(1) test
described in the previous section (as well as the ZvS
test) is not robust to the more general case of AR(2)
data, either (as expected) for regions of the parameter
space where pseudoperiodicities are produced or for the
many parameter combinations yielding spectra that are
monotonically decreasing functions of frequency. This
section describes a bootstrap test analogous to that in
section 2b, but that operates correctly when applied to
data generated by the more general AR(2) model.

Computing the test statistic d proceeds as in section
2b, with the following modifications. To estimate the
variance inflation factor [(3)] for AR(2) data, the first
two sample autocorrelations are required. Equation (6)
is used for the first of these. The sample lag-2 auto-
correlation is estimated here using

n22

(x 2 x̄ )(x 2 x̄ )O t 2 t12 1
t51r 5 , (21)2 1/2n22 n

2 2(x 2 x̄ ) (x 2 x̄ )O Ot 2 t 1[ ]t51 t53

which gives more stable results for small samples than
does the simple extension of the form of (6) to two lags.
In (21), the subscripts ‘‘2’’ and ‘‘1’’ denote sample
means over the first and last n 2 2 series values, re-
spectively. The properties of the AR(2) process are then
used to estimate the remaining n 2 3 autocorrelations
in (3), according to

ˆ ˆr 5 f r 1 f r , k $ 3, (22a)k 1 k21 2 k22

where

1 2 r2f̂ 5 r (22b)1 1 21 2 r1

and
2r 2 r2 1f̂ 5 . (22c)2 21 2 r1

As is the case for the AR(1) test, the values of V thus
obtained are biased. Empirical analysis of samples of
synthetic AR(2) series, of the same kind used to develop
(8), lead to the bias-adjusted variance inflation factor

3V
V9 5 V exp , (23)1 2n

which again is very nearly unbiased except for very
small n and strong time dependence.

Bootstrapping for the AR(2) test to generate a dis-
tribution of d* (13) also proceeds as described in the
previous section, excepting only that the block lengths
are chosen using

l 5 (n 2 l 1 1)(2/3)(121 4V9).Ï (24)

As before, this equation has been developed through
trial and error, using the guidelines in the last paragraph
of section 2a and according to the criterion that the
resulting test operates correctly for the smallest possible
sample sizes without compromising performance for
larger samples. Figure 7 illustrates this performance for
two-sample, two-tailed tests, again over that portion of
the AR(2) parameter space corresponding to stationary
models with positive lag-1 autocorrelation. The shaded
regions indicate parameter combinations for which the
achieved significance level is within the 95% confidence
band of the nominal significance level of 5%, as esti-
mated from 2000 replications for which H0 is true. For
n 5 16, the test operates accurately only for very weak
dependence, where V9 , 1. The portion of the parameter
space exhibiting accurate tests steadily increases with
increasing sample size, until for n 5 64 only tests op-
erating on data exhibiting very strong dependence (f2

k f1) are permissive. For n $ 128 the test yields ac-
curate rejection probabilities for all AR(2) parameter
combinations investigated (also indicated in Fig. 7).
Overall, the AR(2) bootstrap test is accurate for ne larger
than about 12 to 15.

Since the AR(1) process can be regarded as a special
case of the AR(2), the test described in this section can
also be used, and performs accurately, for AR(1) data.
Given the results in Fig. 6a, it is worth considering what
is lost when the slightly more elaborate AR(2) test is
applied to AR(1) series. The answer is that estimation
of the second sample autocorrelation in (21) results in
the AR(2) bootstrap test having slightly less power. The
heavy solid lines in Fig. 4 show the power functions
for the AR(2) test when applied in selected AR(1) set-
tings. The AR(2) test is uniformly less powerful, but
the loss of power is quite small except for small ne. The
AR(2) test also exhibits robustness to non-Gaussian data
that are comparable to those shown in Fig. 5 for the
AR(1) test. Unless one can be quite confident that a data
series can be adequately modeled as AR(1), the serious
nonrobustness of the AR(1) test to AR(2) data illustrated
in Fig. 6a suggests that the AR(2) test should be pre-
ferred to either the AR(1) test or the ZvS test.
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FIG. 7. Achieved significance levels for two-sided, two-sample
AR(2) tests. Shading indicates approximate regions in the parameter
space for which these are not different from the nominal test level
of 5% with 95% confidence. For n 5 128 and greater, the test operates
correctly for all AR(2) parameter combinations considered.

FIG. 8. Achieved significance levels for two-sided, two-sample
AR(2) tests when applied to ARMA(1,1) data series with n 5 128.
Shading indicates approximate region for which these are not different
from the nominal test level of 5% with 95% confidence. Test per-
formance improves only very slightly with sample size.

Finally, Fig. 8 indicates the performance of the AR(2)
test when applied to ARMA(1,1) data (section 2d). Ac-
curate tests are achieved over a larger portion of this
parameter space than was seen for the AR(1) test (com-
pare Fig. 6b), and the achieved significance levels agree
with the nominal level to within a factor of 2 throughout.
It is always permissive where it does not operate cor-
rectly. Figure 8 shows results for n 5 128, but im-
provements with increasing sample sizes are slight. An
improvement with respect to the AR(1) test is not sur-
prising, given that the AR(2) model is very much more
flexible than the AR(1) model.

d. Bootstrap test for ARMA(1,1) data

Another simple but plausible time series model for
geophysical data is the autoregressive–moving average
process, of order 1 in both the autoregression and the
moving average. This is the ARMA(1,1) process, de-
fined by

x9 5 f x9 1 e 2 u e , (25)t 1 t21 t 1 t21

where f1 is the autoregressive parameter, u1 is the mov-
ing average parameter, and the remaining symbols have
the same definitions as in (5) and (20). The ARMA(1,1)
process can be viewed as an AR(1) process forced by
noise et that is itself autocorrelated.

Figures 6b and 8 indicate that the tests in the previous
two sections, based on the assumptions that the data
conform to the AR(1) and AR(2) models, respectively,
perform accurately over only limited portions of
ARMA(1,1) parameter space. An analogous test can be
developed assuming that the data have come from an
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ARMA(1,1) generating process. For this test, the vari-
ance inflation factor V is computed using (3), (6), (21),
and

ˆr 5 f r , k $ 3, (26a)k 1 k21

where

f̂ 5 r /r . (26b)1 2 1

That is, autocorrelation functions for ARMA(1,1) pro-
cesses decay exponentially from their values at the first
lag, at a rate specified by the autoregressive parameter.

As before, the estimate of the variance inflation factor
so obtained is biased, and a correction is necessary for
the bootstrap test to perform properly for relatively
small sample sizes. Following again the regression ap-
proach used to develop (8), it was found that a large
part of this bias for ARMA(1,1) series can be removed
by applying

ˆ(2 1 u )V1V9 5 V exp , (27a)1 2n

where 1 is obtained as the root ofû

2 2ˆ ˆ ˆ(r 2 f )u 1 (1 2 2f r 1 f )u1 1 1 1 1 1 1

ˆ1 (r 2 f ) 5 0 (27b)1 1

that statisfies z 1z , 1. The bias correction (27a) is some-û
what less satisfying than its counterparts (8) and (23)
in that it does not reflect the slight tendency for positive
bias (i.e, V is too large, on average) for ARMA(1,1)
processes for which u1 approaches f1, both of these
parameters are relatively large, and the sample size is
moderately large. Somewhat better test performance un-
der these conditions might be obtained if a more refined
bias correction were to be found.

The mechanics of the bootstrapping proceed as de-
scribed before, using (24) to choose the block length.
The accuracy of this test over the portion of the
ARMA(1,1) parameter space corresponding to station-
ary series with positive lag-1 autocorrelation is shown
as a function of sample size in Fig. 9. For n 5 16 (Fig.
9a) the test is accurate over only a relatively small por-
tion of the parameter space, and the inaccurate tests are
all permissive. As the sample size increases to n 5 64
(Fig. 9c), the test performs accurately over nearly all of
the parameter space. Figure 9d illustrates the effect of
the deficiency in the bias correction (27a), which, since
the small positive bias of V is not corrected, produces
tests that are stringent to a small degree in the upper
portion of the parameter space. However, as a practical
matter, the tests are quite workable even with this small
problem, and the ARMA(1,1) test performs essentially
correctly for n . 64 for all of the parameter combi-
nations investigated here.

The power of these ARMA(1,1) tests is illustrated by
the thick gray lines in Fig. 4. For most of these cases
it is somewhat less sensitive to violations of H0 than

the other tests considered. However, for the more strong-
ly autocorrelated data series (f 5 0.8), the ARMA(1,1)
test is slightly more powerful than the AR(2) test and
is comparable to the AR(1) test.

Finally, the robustness of the ARMA(1,1) test to
AR(2) data is shown in Fig. 10, for n 5 128. While
these results are better than the corresponding results
for the AR(1) test (compare Fig. 6a), the ARMA(1,1)
tests perform accurately only for relatively minor de-
viations from the AR(1) process, which is the special
case of (25), with u1 5 0. For AR(2) parameter com-
binations where the ARMA(1,1) test does not perform
accurately, increasing the sample size yields tests that
are increasingly stringent in relation to the results shown
in Fig. 10. For smaller n the tests represented by the
area below the stippling are still stringent, while tests
in the area in and above the stippling are permissive for
small samples.

3. Multivariate tests

The univariate (scalar data) tests developed in section
2 can be extended to multivariate (vector-valued data)
tests by considering now that the data in each of the
two samples are matrices [x] with elements xt,m, where
t 5 1, ···, n is the time index as before, and m 5 1, ···,
M indexes the elements of the data vectors xt. The vector
elements might correspond to points on a spatial grid,
in which case each xt could be a single realization of a
field, or coefficients for these data projected onto a space
of smaller dimension. The multivariate tests described
below reduce to the univariate tests described in section
2 for M 5 1.

The basic idea behind the multivariate tests is to si-
multaneously carry out the corresponding univariate
tests for all data dimensions. That is, instead of block
resampling scalar series, the same block resampling pro-
cedure will be applied to the vector data. Simultaneous
application of the same resampling patterns to all di-
mensions of the data vectors will yield resampled sta-
tistics reflecting the cross correlations in the underlying
data, without the necessity of explicitly modeling those
cross correlations. Meanwhile, appropriate choice of the
block length will allow the influence of the temporal
correlation on the distribution of the test statistic to be
represented as well.

For each dimension of the data, there will be a cor-
responding distance dm computed using (11). The ‘‘glob-
al,’’ or field, significance relates to the size of the vector
d of these ‘‘local’’ test statistics. If the null hypothesis
of no real local difference in (vector) mean is true, the
size of the vector d, having been drawn from a popu-
lation with mean 0, should be small. However, there are
many choices for judging the size of the test vector d.
The performance, with respect to test accuracy and pow-
er, of the following four vector norms will be investi-
gated:
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FIG. 9. Achieved significance levels for two-sided, two-sample ARMA(1,1) tests. Shading indicates approximate regions for which these
are not different from the nominal test level of 5% with 95% confidence.

M

D 5 zd z, (28a)O1 m
m51

M

2D 5 d , (28b)O2 m
m51

D 5 max zd z, (28c)3 m
m

and
M

D 5 #{p # a} 5 I[p # a]. (28d)O4 m m
m51

The first of these norms, D1 (28a), measures the length
of d as the sum of the absolute values of its elements,

which has been recommended by Mielke (1985). The
vector norm D2 (28b) is the square of the traditional
Euclidean distance in M-space, and this (or, equiva-
lently, its square root) would be the conventional choice.
Here, D3 (28c) is the ‘‘max norm,’’ or largest element
of d, which typically corresponds to the smallest p value
among the local tests, as suggested, for example, by
Westfall and Young (1993). Finally, D4 (28d) is the
‘‘counting norm’’ (Zwiers 1987), or the number of the
M local tests that are significant at the a100% level,
which has been employed frequently for testing climate
data (e.g., Livezey and Chen 1983; Wilks 1996). In
order to employ D4, a specific local test must be chosen
to compute the p value pm, which in the following will
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FIG. 10. Achieved significance levels for two-sided, two-sample
ARMA(1,1) tests when applied to AR(2) data, with n 5 128. Shading
indicates approximate region in which these are not different from
the nominal test level of 5% with 95% confidence.

be the z test assuming the asymptotic Gaussian distri-
bution of (11).

Sampling distributions under H0 for each of the norms
in (28) are developed by bootstrapping the data [x] in
the same way as described in section 2 for scalar series,
with the same time blocks being chosen in each boot-
strap sample for each of the M dimensions. Note that
the two data batches [x1] and [x2] need not be resampled
using the same block length. For each of the nB bootstrap
samples generated in this way, (13) is applied to each
of the M elements to yield the vector d*, the length of
which, D*, is in turn computed according to the various
norms in (28). The (univariate) distribution of each of
these collections of nB realizations of D* is then used
to assess the unusualness of the corresponding observed
D by applying the percentile method (14), using D and
D* rather than d and d*. That is, d is declared to be
significantly different from 0 at the a100% level if D
is among either the (a/2)100% smallest or the
(a/2)100% largest of the nB values of D*.

The multivariate data used to demonstrate that the
vector hypothesis tests will be realizations from the sim-
plified vector autoregressive process

x 5 f x 1 [C] et,9 9t t21 (29)

where et is an M-dimensional vector of independent
standard Gaussian variates. The matrix [C] reflects the
correlation among the elements of xt and is related to
their (unlagged) correlation matrix according to [C] [C]T

5 [R0]. For simplicity, a scalar autoregressive coeffi-
cient f is used in (29), which implies that the matrix
of lag-1 correlations [R1] is symmetric and proportional
to [R0].

Multivariate data with two forms of cross correlation

will be investigated, which are the same as those used
by Zwiers (1987). These correlations among the M el-
ements of x are introduced through the matrix of un-
lagged correlations [R0], whose elements are

1, zi 2 jz 5 0
r 5 s /(1 2 s ), zi 2 j z 5 1 (30)i,j 1 25s r 1 s r , zi 2 j z $ 2.1 zi2jz21 2 zi2j z22

The two spatial correlation structures to be considered
are a spatial analog of an AR(1) process, for which s1

5 0.9 and s2 5 0, and a spatial analog of an AR(2)
process, for which s1 5 1.6 and s2 5 20.8. The (spatial)
lag-1 autocorrelation for these two models is nearly
identical. However, at larger spatial separations, the au-
tocorrelation structures are quite different. The spatial
AR(1) autocorrelation function decreases monotonically
toward zero with increasing lag, while the spatial AR(2)
autocorrelation function exhibits damped oscillations
around zero, with local maxima and minima reminiscent
of teleconnection patterns.

In order for the vector block bootstrapping to capture
the cross correlation in the data produced by (30), it is
essential that the same block length l be applied to each
of the vector elements. In the following, this common
block length is chosen by separately computing l for
each vector element, as described in section 2, and then
averaging these M specified block lengths. This pro-
cedure is a quick and ad hoc choice, which could very
likely be improved upon. Note that it is not necessary
for the two data vectors in a two-sample test to be re-
sampled with the same block length.

Figures 11 and 12 show the achieved significance
levels of these vector tests for data generated using the
spatial AR(2) process and spatial AR(1) process from
(30), respectively. The tests are two-sample, two-sided
tests, and the shading again indicates 95% confidence
intervals around the nominal significance level of 5%.
The four panels in each figure show results for tests
constructed using each of the four test statistic norms
in (28). These results are for sample sizes ranging from
n 5 16 to n 5 2048 and for M 5 4 to M 5 64 di-
mensional data. The symbols indicate data generated
using f 5 0.2, 0.5, and 0.8 in (29), and only points for
which ne . 10 are plotted.

Achieved significance levels for the multivariate tests
based on both D1 and D2 are quite close to the nominal
level of 5% when the effective sample size ne is rela-
tively large with respect to the dimension M of the data
vectors, and the performances of these two norms in
this respect are nearly indistinguishable. These obser-
vations apply as well to tests based on the max norm
D3, except when the temporal dependence is strong, in
which case the tests tend to be stringent. Tests based on
the counting norm D4 appear to be consistently stringent
even for large ne/M, although not grossly so. However,
for weak temporal dependence (f 5 0.2), tests based
on D3 perform well even for small sample sizes in re-
lation to M. For other situations in which ne , M, all
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FIG. 11. Achieved significance levels for multivariate two-sample, two-sided tests. Shaded regions indicate 95% confidence intervals around
the nominal significance level of 5%. Sample sizes range from n 5 16 to n 5 2048, and the dimension of the data vectors ranges from M
5 4 to M 5 64. Dependence between vector elements is specified by (30), with s1 5 1.6 and s2 5 20.8. Symbols indicate autoregressive
parameter f1 5 0.2, 0.5, or 0.8. Only points for which ne . 10 are plotted.

of the tests are stringent, especially for the spatial AR(2)
data in Fig. 11, but could still be used in practice given
the understanding that the actual test level is somewhat
smaller than the nominal one. Tests for data with ne ,
10 (not shown) are progressively more permissive, but
exhibit gross inaccuracies (achieved significance levels
larger than 0.10) only for ne smaller than about 2. Re-
sults similar to those in Figs. 11 and 12 are obtained
for extensions of (29) used to generate vector AR(2)
data (not shown), with series having weaker or stronger
autocorrelation (as measured by V) exhibiting results
similar to those in Figs. 11 and 12, with smaller or larger
values of f, respectively.

The most pronounced differences in the performance
of tests based on the four norms in (28) are with respect
to their power. Figure 13 illustrates the sensitivity to
violations of H0 of the multivariate tests constructed
using these four vector norms. The specific case pre-

sented pertains to two-sided, two-sample tests at the
nominal 5% level, applied to vector AR(1) data with n
5 M 5 64 and cross correlation described by (30), with
s1 5 1.6 and s2 5 20.8. The six panels in Fig. 13 show
power functions for different numbers mD of the M vec-
tor elements of the population mean for one of the two
samples being increased. The power functions in Fig.
13a pertain to the mean of only mD 5 1 of the M 5 64
elements being increased, with the identity of that el-
ement being chosen randomly for each replication. Since
one would expect that violations of H0 would tend to
occur with spatial coherency, changes to the vector
means in Figs. 13b–f are made randomly, but with the
constraint that the changes are made to adjacent vector
elements, in contiguous blocks of length mD.

Clearly, the power of the tests increases as mD in-
creases, since increasing the means of larger numbers
of vector elements by a fixed amount provides stronger
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FIG. 12. As in Fig. 11 but for dependence between vector elements specified by (30) with s1 5 0.9 and s2 5 0.

signals for the tests to detect. As expected by extension
of Fig. 4, power is greater for tests operating on less
strongly correlated data (f 5 0.5) than on more strongly
correlated data (f 5 0.8). For clarity, only results for
f 5 0.5 are shown in Figs. 13a,b. Power for tests with
f 5 0.2 (also not shown) bears the same qualitative
relationship to the f 5 0.5 and f 5 0.8 results as in
Fig. 4. The levels of the power functions for Dm/se 5
0 indicate that the tests are stringent for this sample
size, particularly for f 5 0.8. This is consistent with
Fig. 11 since Fig. 13 pertains to the rather demanding
cases of ne/M 5 0.34 and 0.12 for f 5 0.5 and f 5
0.8, respectively.

For a given value of mD, there are very major dif-
ferences in test sensitivity among the tests based on the
four vector norms in (28). For the most challenging
cases of small mD, the max norm D3 (heavy solid lines)
is clearly superior to the others. The squared-distance
norm D2 (light solid lines), absolute-distance norm D1

(light dashed lines), and the counting norm D4 (heavy

dashed lines) show progressively decreasing sensitivity,
with D4 exhibiting especially low power for small mD.
As mD increases, the power of the D3 test increases only
slightly, while the power of the other tests increases
substantially, until mD 5 16, where power for most of
the tests is fairly comparable. For mD 5 32 the power
of the D3 tests is noticeably less than for the other three
norms, which are now practically identical in power.

The same basic patterns shown in Fig. 13 occur for
other sample sizes as well, although with less power for
smaller n and greater power for larger n. Results for
vector data generated using (30) with s1 5 0.9 and s2

5 0 are also very similar, but with a tendency for the
tests to exhibit slightly less power. Power functions for
analogous tests performed on temporal AR(2) data, with
the component scalar tests as described in section 2c,
are also basically the same but with (analogously to Fig.
4) slightly less power when applied to these temporal
AR(1) data. Power functions for the tests applied to
mutually independent multivariate data (i.e., s1 5 s2 5
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FIG. 13. Comparison of power functions for multivariate two-sample tests, using vector AR(1) data with n 5 64 and M 5 64, conducted
at the nominal 5% level. Horizontal axis is difference between individual elements of the population means, standardized by the square root
of the white-noise variance. (a)–(f) Results for differences between the mean vectors applied to mD 5 1, 2, 4, 8, 16, and 32 randomly selected
adjacent vector elements, respectively. Dependence between vector elements is specified by (30), with s1 5 1.6 and s2 5 20.8. Results for
f1 5 0.8 are omitted from (a) and (b) for clarity.

0) are also qualitatively similar, but show noticeably
greater power.

The power functions shown in Fig. 13 are also rep-
resentative of those for other values of the vector di-
mension M, except for the performance of tests based
on the counting norm D4. The ratio mD/M required for
tests based on the counting norm to exhibit good power
must be larger for smaller M and can be smaller for
larger M. As a rule of thumb, for the tests described in
this paper at least, those based on the counting norm
exhibited good power when the ratio mD/M was larger
than approximately 2(M)21/2. Intuitively, it is reasonable
that tests based on the D4 would have low power for
small mD since this norm does not take account of how
strongly each local scalar H0 is rejected.

Finally, it is remarkable that the power of these mul-

tivariate tests based on the max norm D3 is so great for
the difficult cases where the ‘‘signal’’ is confined to only
a very small number mD of elements embedded in M-
dimensional ‘‘noise.’’ Comparison of Fig. 4b to Fig. 13a
shows that for mD 5 1 the test suffers surprisingly little
degradation in power as the dimension of the data vec-
tors increases from M 5 1 to M 5 64 for f 5 0.5 and
the relatively small sample size of n 5 64. For M 5 1
in Fig. 4b, the test achieves 90% power at Dm/se 5 1.1,
while for M 5 64 in Fig. 13a, the scaled difference in
the mean (of only one of the M vector elements) nec-
essary to achieve 90% power increases to only 1.7. For
the intermediate values M 5 4 and 16, the corresponding
Dm/se are 1.2 and 1.4, respectively. Larger sample sizes
yield the same qualitative patterns, but with decreasing
Dm/se. By focusing on the scalar test indicating viola-
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tion of H0 most strongly, the max norm D3 appears to
filter much of the mere sampling variability in the re-
maining M 2 mD vector elements. Conversely, however,
when mD is large this focus leads D3 to ignore important
information, leading to tests with lower power.

4. Summary and conclusions

This paper has developed bootstrap tests that are
based on a nonparametric analog of Katz’s (1982) test
for selected simple time-dependence structures. The
tests are robust to deviations from Gaussian data and
perform well for relatively small sample sizes. The uni-
variate bootstrap tests developed in section 2 are nearly
as powerful as the corresponding likelihood ratio tests.
Proper choice of the bootstrap block length is important
for accurate test performance. The prescriptions offered
here for the block length work well for hypothesis tests
of the mean, but may not be universally applicable.

The primary motivation for this paper has been con-
struction of nonparametric multivariate tests, by oper-
ating the scalar tests of section 2 in parallel and thus
resampling directly the cross correlation in vector data.
The results in section 3 show that this can be a successful
strategy, although in most cases the actual test levels
are smaller than the nominal significance levels when
the effective sample size ne is comparable in magnitude
or smaller than the dimension M of the data vectors.
The condition ne/M , 1 occurs frequently enough in
practice to be important and yet is not handled well by
existing tests. The tests described here can be applied
successfully in these instances as well, provided the
analyst accounts for their moderate conservatism.

The univariate test presented in section 2b, which
assumes that the data arise from a first-order autore-
gressive process, performs very badly indeed when this
assumption is violated. It was found here that this short-
coming applies equally to the test recently developed
by Zwiers and von Storch (1995). The test presented in
section 2c, which is based on the assumption that the
data follow a second-order autoregressive process, is
much more robust and widely applicable. If it can be
assumed in a univariate test setting that the data are
AR(1), then the ZvS test will be preferable to the scalar
bootstrap tests developed here, from the standpoints of
test power and computational simplicity. More gener-
ally, however, the AR(2) bootstrap test developed in-
section 2c should be preferred. In practice, one could
investigate formally which of the three time series mod-
els used in sections 2b–d best fits the data series at hand
(e.g., Katz and Skaggs 1981).

If a dataset of interest clearly exhibits behavior more
elaborate that any of the three models used in section
2, the performance of these tests can be readily inves-
tigated through Monte Carlo simulations of the type
used here, if an adequate time series model for the data
at hand can be identified. Following such an analysis,
judgments regarding the outcome of the tests can be

made using the resulting estimate of the achieved sig-
nificance level, rather than the nominal one. It would
clearly also be possible to extend the procedures de-
scribed above to construct tests oriented toward specific
higher-order or more complex models for the time de-
pendence in the data.

The power of the multivariate tests developed in sec-
tion 3 depends very strongly on the vector norm chosen
to summarize the individual scalar test statistics. When
differences in vector means are confined to a small num-
ber of vector elements, the tests based on the counting
norm exhibit extremely poor power. Limited ability to
discern violations of the null hypothesis in such ‘‘needle
in a haystack’’ situations is expected, as has been point-
ed out by Hasselmann (1979). However, it is found here
that use of the max norm, or largest of the M scalar
statistics, yields surprisingly powerful multivariate tests
even when the signal is confined to a small number of
the vector elements and that the test power degrades
relatively little as M increases. Unless it is known or
strongly suspected that violations of H0 will occur for
a large proportion of the elements of the data vectors,
the max norm D3 is probably the best choice among
those presented in (28).

For the multivariate tests it is essential that the vector
bootstrapping operate with the same block length for
each element of a data vector, although the block lengths
for the two vectors in two-sample problems can be dif-
ferent. It is not necessary, however, that the same scalar
time series model be assumed for each element of a data
vector. For purposes of computing the denominator of
(11), some of the scalar series could be modeled as
ARMA(1,1), some as AR(2), etc., so long as comparable
block lengths would result.

Although attention has been confined here to tests for
differences in means, there is no reason why analogous
tests addressing other aspects of the data could not be
constructed as well. For example, tests involving mea-
sures of the variance of data fields, or functions of the
spatial correlation patterns, could be of interest. In these
cases, the more refined bootstrap confidence intervals
described in Efron (1987) might produce significant im-
provements in test performance.

How the tests should proceed if the elements of a data
vector exhibit grossly different degrees of serial cor-
relation is unclear, although for large sample sizes the
underlying scalar tests perform well over a fairly wide
range of choices for l. The consequences of misspeci-
fying the block length for some of the data elements
could be explored more fully. This potential problem is
relevant because of the clear need to adapt the block
length to the strength of the autocorrelation in the data.
This requirement has also motivated the use of para-
metric time series models to compute V9 in (12), even
though a wholly nonparametric approach might be pref-
erable. Future work might also address more general
and robust alternatives to this aspect of the construction
of the tests.
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